
Forests 2015, 6, 594-612; doi:10.3390/f6030594 
 

forests 
ISSN 1999-4907 

www.mdpi.com/journal/forests 

Article 

Analysis of Unmanned Aerial System-Based CIR Images in 
Forestry—A New Perspective to Monitor Pest Infestation Levels 

Jan Rudolf Karl Lehmann 1,*, Felix Nieberding 1, Torsten Prinz 2 and Christian Knoth 2 

1 Institute of Landscape Ecology, University of Münster, Heisenbergstr.2, 48149 Münster, Germany; 

E-Mail: f_nieb01@uni-muenster.de 
2 Institute of Geoinformatics, University of Münster, Heisenbergstr.2, 48149 Münster, Germany;  

E-Mails: prinz@uni-muenster.de (T.P.); christianknoth@uni-muenster.de (C.K.) 

* Author to whom correspondence should be addressed; E-Mail: jan.lehmann@uni-muenster.de;  

Tel.: +49-251-833-0119; Fax: +49-251-833-8338. 

Academic Editors: Dave Verbyla and Eric J. Jokela 

Received: 3 February 2015 / Accepted: 15 February 2015 / Published: 2 March 2015  

 

Abstract: The detection of pest infestation is an important aspect of forest management. In 

the case of the oak splendour beetle (Agrilus biguttatus) infestation, the affected oaks 

(Quercus sp.) show high levels of defoliation and altered canopy reflection signature. These 

critical features can be identified in high-resolution colour infrared (CIR) images of the tree 

crown and branches level captured by Unmanned Aerial Systems (UAS). In this study, we 

used a small UAS equipped with a compact digital camera which has been calibrated and 

modified to record not only the visual but also the near infrared reflection (NIR) of possibly 

infested oaks. The flight campaigns were realized in August 2013, covering two study sites 

which are located in a rural area in western Germany. Both locations represent small-scale, 

privately managed commercial forests in which oaks are economically valuable species. Our 

workflow includes the CIR/NIR image acquisition, mosaicking, georeferencing and pixel-based 

image enhancement followed by object-based image classification techniques. A modified 

Normalized Difference Vegetation Index (NDVImod) derived classification was used to 

distinguish between five vegetation health classes, i.e., infested, healthy or dead branches, 

other vegetation and canopy gaps. We achieved an overall Kappa Index of Agreement (KIA)  
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of 0.81 and 0.77 for each study site, respectively. This approach offers a low-cost alternative 

to private forest owners who pursue a sustainable management strategy.  

Keywords: autonomous flying; beetle infection; drone; GIS; NDVI; object-based image 

analysis; OBIA; UAV  

 

1. Introduction 

It is predicted that climate change will cause an increase in annual temperature across Central Europe, 

which will cause a rise in the frequency of extreme weather events. These factors are recognised to 

facilitate the spread of forest diseases, with the main concern being tree pests [1,2]. In Germany, oak 

forests become frequently infested by populations of the splendour beetle Agrilus biguttatus (Fabricius, 

1777) and cuttings of trees suffering damage caused by these beetles caused a significant amount of 

unplanned harvests in Germany over the recent years [3,4]. Forest owners and managers are anxious 

about these problems, and are tackling the issues through frequent monitoring of oak forest stands. This 

provides essential information for early detection of diseased trees and prevention of disease spread. 

However, traditionally the assessment of pest induced vegetation anomalies in canopy pattern is 

performed with laborious and time-consuming field sampling methods [5,6]. Additionally it might be 

hampered in very dense forests due to a difficult access to the canopy.  

Consequently, remote sensing techniques are widely applied in the detection and monitoring of pest 

infestations in forests [7–10]. Multi-spectral infrared (IR)-imagery derived from high flying aircraft [11,12], 

commercial satellites, or multi-temporal public datasets like the ASTER or Landsat Thematic Mapper 

satellite system [13–15], has been extensively used for conservation and forest restoration  

monitoring [16,17]. However, privately owned oak forest stands pose challenges to conventional remote 

sensing approaches. These forests show limited spatial dimensions, requiring high-resolution but low-cost 

multispectral remote sensing data and an “ad hoc” acquisition on demand [3,18–20]. To address these 

specific challenges, the application of classic multispectral satellite data or conventional aerial imagery 

is often restricted due to a high cost per unit area of ground coverage or low-resolution image data [21]. 

By addressing the limitations of conventional remote sensing approaches in forestry, Unmanned Aerial 

Systems (UAS) may provide accurate means of monitoring pest infestation at stand and even species 

level. Several authors have already addressed the benefits of UAS-based remote sensing methods for the 

assessment of ecologically relevant geospatial data in general, as they represent a new type of low-cost 

and small remote sensing platform [22–24].  

Mostly, the primary role of the UAS was to provide current imagery over the area of interest, and to 

obtain sufficiently high-spatial resolution for visual identification and mapping of vegetation [25]. The 

first fundamental steps in the direction of semi-automated classification of vegetation patterns based on 

high-resolution UAS digital imagery were made in the field of precision farming in order to evaluate the 

spatial dimensions of weed infestation [26]. Studies using high-resolution aerial images with sub-decimeter 

ground sample distances (GSD) have relied primarily on fixed-wing UAS constructions, zeppelins or 

balloons [27,28]. Due to recent advances in the miniaturization of electronics, navigation, and global 

positioning systems (GPS), multicopter UAS with their vertical take-off and landing (VTOL) 
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capabilities provides a promising alternative, especially in areas with limited or inconvenient take-off or 

landing conditions. Hence they evolved as a potential option for a highly flexible sensor platform to 

collect very high-resolution (down to 1 cm GSD) image data [29,30].  

Vegetation health can be best assessed by the reflectance in the Near Infrared (NIR) wavelength 

region [31]. Thus, Colour Infrared (CIR) images might be much more promising than true colour (RGB) 

for automated analysis separating spectral and textural surface patterns in high-resolution images [24]. 

Particularly, high-resolution imagery paired with object-based classification techniques are considered 

to be a promising tool for environmental monitoring [32]. A thorough documentation of infestation 

levels by flexible, non-invasive and low-cost UAS-based remote sensing techniques seem to be 

appropriate to gather crucial geospatial information regarding the spatial distribution of infested trees. 

However, the application of these techniques poses specific challenges to the analyst as the resulting 

classification accuracy can be influenced by site specific factors such as illumination conditions [9,33]. 

Especially shadows are reported to be possible error sources [34,35] but can often be handled by 

adopting appropriate measures during image acquisition and image processing. Therefore, the objective 

of this study was to adapt and apply recent mapping techniques to forestry needs which have proven to 

be successful in environmental monitoring of restored cutover bogs [36]. The question was whether 

UAS-acquired CIR-images can provide reliable remote sensing data and deduced pest infection level 

maps to support private forestry management efforts.  

2. Methods 

2.1. UAS Sensor Platform 

In this study a radio controlled four-propeller powered multicopter (Figure 1) was used as an UAS 

remote sensing platform. The quadrocopter was a ready-made and commercially available Microdrones 

MD4-200 and is equipped with a GPS and Inertial Measurement Unit (IMU) for navigation and control. 

In contrast to most self-built construction kits, it has advantages regarding, usability and reliability as 

well as flight duration due to its professional airframe construction and high-quality batteries. The UAS 

had an estimated flight time of approximately 30 min with a sensor-payload of about 200 g at a typical 

flight altitude between 20 and 80 m above surface depending on the requested ground resolution. The 

quadrocopter is also able to fly autonomously a waypoint track heading to coordinates on a preset 

altitude. For an efficient flight planning, we set the required parameters (e.g., coordinates of desired 

positions for aerial images, flight altitude above surface, camera orientation) in advance using 

proprietary (Microdrones) software. Additionally, the UAS provided a radio up- and downlink in order 

to allow the current sensor view and navigation data to be transmitted to a ground control station, 

enabling direct adjustment of settings during the mission. Technical features of the used UAS are 

summarized in Table 1.  
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Figure 1. The commercial “ready-to-use” Microdrones MD 4-200. Payload includes IMU, 

GPS receiver, downward pointing CIR-modified digital Canon IXUS 100 camera, radio 

downlink and microprocessor controlled flight control units.  

Table 1. Key-features of the used quadrocopter (UAS). 

Technical Feature Microdrones MD4-200 

Payload <200 g 

Estimated flight time ~30 min 

Recommended flight altitude <80 m 

GPS autonomy flight mode Yes 

Radio up-/downlink Yes 

Ground control Field control center 

Camera system (modified) IXUS 100 IS 

2.2. Field Survey 

Aerial images analysed in this study were taken in August 2013 at two forest stands (study sites A 

and B), both of them allocated a few kilometres NW and SE from the rural city of Soest, Northrhine 

Westfalia in NW-Germany (Figure 2). The forest stands consist mainly of oak (Quercus robur), minor 

European hornbeam (Carpinus betulus), several understorey shrubs (A) or in case of (B) merely oaks 

(Quercus robur) and some isolated beech trees (Fagus sylvatica) also understorey shrubs. Both study 

sites belong to privately managed forests and differ slightly in size (A = 0.85 ha; B = 2.05 ha). Weather 

conditions were sunny and calm with scattered cloud cover forming during the time of image acquisition. 

Before each UAS flight campaign was conducted five ground control points (GCPs; 20 × 20 cm white 

panels) had been laid out in the field and were logged with a high-precision Differential Global 

Positioning System (DGPS; Trimble Navigation Limited, Sunnyvale, Calif.) for georeferencing 

purposes in order to support the image processing later on. Additionally, distinctive terrain objects (e.g., 

path, deerstand) were recorded.  

All A. biguttatus infested and dead oaks were mapped using the DGPS with around 3 m accuracy 

under the forest canopy. The identification of infested or dead oak trees were performed independently 
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by the regional forestry department (Soest-Sauerland), which carried out a conventional terrestrial 

monitoring of A. biguttatus beetle attack in these oak stands over the last five years. A total of seven oak 

trees with symptoms of A. biguttatus beetle attack and four dead oak trees were identified and logged. 

Infested oak trees show typical symptoms such as transparent crowns with foliage on surviving branches. 

Uninfested oaks exhibited a fully developed canopy of green leafs with a high NIR albedo during time 

of remote sensing data acquisition.  

 

Figure 2. Location map of the study sites in Northrhine Westfalia near the town Soest 

(Germany). The investigated study sites are outlined in white. 

2.3. Sensor Technique and Data Processing 

The UAS was equipped with a calibrated Canon IXUS 100 digital camera, in which the “hot mirror” 

filter in front of the imaging sensor had been removed. In most commercially available cameras, NIR 

radiation is blocked by such filters to ensure natural colour images without undesired shifts towards the 

red. As shown by Jensen et al. [37] and Hunt et al. [38] this hot mirror can be removed (or even replaced 

by other filters) in order to enable the CCD (charge coupled device) sensor of the camera to record also 

NIR information instead of taking true colour images (Figure 3). A replacement of the hot mirror by a 

neutral glass filter has the great advantage that external filters or another equipment can be placed in 

front of the lenses to enable various modes of infrared photography. Consequently a significant increase 
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of modularity can be achieved by this special optical set up and users can decide whether they want to 

generate natural colour (true colour) or near infrared (NIR) images, depending on the external lens filter 

sets applied.  

 

Figure 3. The effect of different optical filters to the spectral recording of the cameras charge 

coupled device (CCD) mounted to the UAS in order to obtain true colour (VIS = visible), near 

infrared (NIR = infrared) or modified colour infrared (CIR) images. In this study visible red 

instead of visible blue was blocked by the cyan filter in order to extract the pure NIR albedo 

and to avoid unspecific tinges of red, since the CCD records the albedo in continuous manner 

and exhibits no distinct multispectral wavelength bands (see also Knoth et al. [24,36]). 

The value of NIR imaging is significantly increased if colour infrared (CIR) images are calculated by 

acquiring VIS and NIR data simultaneously. However, even modified digital cameras do not have a 

specific channel for infrared light and thus cannot separate the NIR from VIS in the same shot [39]. 

Previous case studies testing modified digital cameras for CIR photography used a double-camera 

approach combining separately captured natural colour and NIR images to generate a four-band CIR 

image [37]. However, beside additional post-processing efforts, this approach is currently unsuitable for 

UAS-based remote sensing due to restrictions in payload and flight duration. Consequently, we selected 

a (cyan) colour filter to block the visible red light while at the same time the NIR radiation (up to about 

830 nm) is mainly recorded in the “red”-band due to the internal mosaic colour filter attached to the 

image sensor of the camera (so called Bayer-filter, [24]). 

In doing so, we produced false colour composites capturing visible and near infrared radiation 

simultaneously. However, in contrast to common CIR images the visible red information was no longer 

captured. The remaining three bands of Blue, Green and NIR were automatically registered by the camera 

without any need for additional post-processing. A comparable approach was presented by Hunt et al. [40] 

in the field of crop monitoring.  

After the spectral modifications, the camera was mounted on the UAS using a gimbal-mounted holder 

to compensate tilt and roll movements enabling the vertical alignment of the optical axis during exposure. 

A prior photogrammetric calibration of the camera system was done to provide information on its 

parameters of interior orientation, especially the image distortion, which is considerably larger compared 

to professional aerial survey cameras. These parameters could be used during the ortho-rectification of the 
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images to increase the spatial accuracy. Multispectral images taken during one mission were usually 

stored to the internal memory card of the camera.  

The image data was adjusted by reducing blurry and under- or over-exposed images. Mosaicking was 

achieved using Agisoft PhotoScan Professional (v. 0.9.0; Agisoft LLC, St. Petersburg, Russia), a 

software specially designed to stitch air- or spaceborne images. The software automatically selects a 

high amount of tie points in every individual image and compares them to all other images, thus selecting 

and arranging pairs. The software also removes changes in camera angle and altitude that are artefacts 

collected during the flights. Radiometric distortions, normally caused by atmospheric influences was 

insignificant because of the very low flight altitudes [36]. The final unified images obtained from the 

aerial surveys were georeferenced in ArcGIS (v. 10.2; ESRI, Redlands, CA, USA) using the collected 

ground control points and distinctive terrain objects. Afterwards, the image data were pre-processed 

using ERDAS Imagine including the Leica Photogrammetry Suite (LPS, version 2011). The 

multiresolution segmentation and object-based image analysis (OBIA) was performed using eCognition 

developer (v. 8.64.1; Trimble GeoSpatial, Munich, Germany).  

2.4. Image Analysis and Classification  

Because the visible red reflectance was not captured, commonly applied indices like the NDVI could 

not be direct processed. Alternatively, a modified NDVImod ((NIR − visible blue) / (NIR + visible blue)) 

and principal components (PCs) were calculated to generate additional spectral properties such as the 

distinct NIR-albedo variation (Figure 4), by re-combining and elaborating standard multispectral image 

enhancement techniques [41]. An additional advantage of these new datasets is the reduction of 

illumination effects (e.g., shadows or diffuse refection) due to the inhibition of data redundancy in the 

original input bands. In the NDVImod dead or strong infested oaks can be distinguished from healthy 

trees by their extreme low albedo ratio (less/absent biomass = dark pixels) while in the 2nd principal 

components the same trees are indicated by bright pixels, since this PC indicates the strong uncorrelated 

albedo-differences between the NIR and visible blue. The images exhibit a high-spatial resolution of 

about 2 cm which enables the definition of plant-related features through distinct pixel values (colour) 

at branch level. However, this kind of object-based high-resolution image analysis can be affected by 

shadows [34,35]. Nevertheless, these calculated datasets represent a promising base for the following 

multiresolution segmentation and subsequent object-based classification (OBIA).  

 

Figure 4. Subsets of the UAS derived CIR mosaics from the oak forest stands site (left) and 

the corresponding NDVImod (center) and 2nd PC (right). Infested oaks are indicated by low 

or high grey values due to low biomass (NDVImod) and strong uncorrelated NIR/visible 

variations (2nd PC). 
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We applied a multiresolution segmentation which generated objects by merging several pixels 

together, based on relative homogeneity criteria [42]. This criterion is defined by setting thresholds for 

the scale, shape/colour and compactness [32]. In this study the segmentations were performed with a 

scale parameter of 150 resulting in 3482 individual objects for the study site A and 6763 individual 

objects for the study site B, respectively. As the vegetation health can be best assessed by the reflectance 

in the NIR-wavelength region, the colour feature appeared as a more promising distinctive feature than 

shape related characteristics. Thus, after iterative testing of the parameter levels, a ratio of 0.1/0.9 for 

shape/colour was selected (0.1 = lowest influence/0.9 = highest influence on the classification model). 

The level of compactness has a comparatively small influence on the output objects if the shape level is 

low. Hence, we used the pre-set value of 0.5 for the compactness threshold. No negligible changes were 

observed when this threshold was adjusted [43]. 

The subsequent object-based classification (nearest neighbour algorithm) was realized by selecting 

thresholds of class specific image features. The thresholds of these features (Table 2) were automatic 

registered by selecting manually class specific samples via an on-screen interpretation and additional 

field inspection data (DGPS points of infected or dead oaks). Overall, five classes were defined: infested, 

healthy or dead branches, other vegetation and canopy gaps.  

Table 2. Object features used during object-based image classification with eCognition. 

Customized 
NDVImod: ([Mean nir] − [Mean blue])/([Mean nir] + [Mean blue]) 

Layer Values 
HSI Transformation Intensity (R = nir, G = green, B = blue) 
HSI Transformation Hue (R = nir, G = green, B = blue) 
HSI Transformation Saturation (R = nir, G = green, B = blue) 
Mean NIR  
Mean Green  
Mean Blue  
Mean Brightness 
Standard Deviation NIR 
Standard Deviation Green 
Standard Deviation Blue 

Finally, a confusion matrix was calculated to evaluate the accuracy of the final classifications 

including: (1) the producer’s accuracy, which is defined as proportion of correctly classified objects to 

the reference samples of a class; (2) the user’s accuracy, which is defined as the proportion of correctly 

classified objects within the total number of samples classified; (3) the overall accuracy, which is defined 

as the proportion of all correctly classified objects and the total sample size; (4) the Kappa Index of 

Agreement (KIA), which is defined as the agreement of the classification results with the corresponding 

reference data [44]. The interpretation of the Kappa statistics were based on the categories proposed by 

Landis and Koch [45]. Hence, a classification accuracy of Kappa < 0.20 is poor, 0.21 < kappa < 0.40 

fair, 0.41 < kappa < 0.60 moderate, 0.61 < kappa < 0.80 good, and 0.81 < kappa < 1 very good. 
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3. Results  

A final unified high-resolution CIR-image of the study site A is displayed in Figure 5. The resulting 

classification maps of both study sites are presented in the Figure 6 and the associated accuracy values 

in Table 3. The semi-automatic object-based classification distinguished between the five classes at an 

overall accuracy level of 85% for the study site A and 82.5% for the study site B, respectively. The 

overall KIA statistic reached 0.81 (A) and 0.78 (B). Thus, according to the categories suggested by 

Landis & Koch (1977) [46] the overall accuracies of the classifications are categorised as “very good” 

for the study site A and “good” for the study site B, respectively.  

The results of the KIA per class statistic for the study site A showed that canopy gaps is the most 

distinguishable class with a coefficient of 0.97, followed by other vegetation (0.87), healthy branches 

(0.79), infested branches (0.67) and dead branches (0.66). In comparison, for the study site B the best 

class-specific KIA statistics were reached for other vegetation (0.96), healthy branches (0.84) and 

infested branches (0.81). The classes dead branches and canopy gaps achieved 0.73 and 0.65, 

respectively. The class-specific producer’s accuracies for the study site A were 97.8% for canopy gaps, 

89.8% for other vegetation, 85.5% for healthy branches, 71.4% for dead branches and 68.8% for 

infested branches. For the study site B the producer’s accuracies reached 96.6% for other vegetation, 

89.1% for healthy branches, 83.3% for infested branches, 78.6% for dead branches and 71.2% for 

canopy gaps. Further, the class-specific user’s accuracies achieved for other vegetation 97.8% and 

93.3% (for study site A and B, respectively), dead branches 96.8% and 89.8%, infested branches 91.7% 

and 90.9%, canopy gaps 77.2% and 90.2% and healthy branches 75.8% and 65.3%.  

 

Figure 5. Resulting high-resolution colour-infrared mosaic of the study site A constructed 

from 44 overlapping photos. 
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Figure 6. Classification maps of study site A (left) and B (right) obtained by  

multi-resolution segmentation and subsequent object-based classification. Infested and dead 

oaks (yellow cross and X) were identified by the regional forestry department (Soest-Sauerland) 

and recorded with a Differential Global Positioning System (DGPS). 

Table 3. Confusion matrix and accuracy results of the object-based image analysis (OBIA). 

Producer’s accuracy: ratio between correctly classified objects and reference samples within 

a class. User’s accuracy: ratio between correctly classified objects and the total number of 

samples assigned to a class. Overall accuracy: ratio between the number of all correctly 

classified objects and the total number of samples. Kappa Index of Agreement (KIA): 

measure of the proportion of agreement after removing random effects.  

Study Site A Healthy Infested Dead Other Vegetation Canopy Gaps Sum

healthy 47 5 4 5 1 62 

infested 1 11 0 0 0 12 

dead 10 0 30 0 0 31 

other vegetation 1 0 0 44 0 45 

canopy gaps 5 0 8 0 44 57 

unclassified 0 0 0 0 0 0 

Sum 64 16 42 49 45  

Producer’s accuracy 85.5 68.8 71.4 89.8 97.8  

User’s accuracy 75.8 91.7 96.8 97.8 77.2  

Overall Accuracy 85.0      

KIA per class 0.79 0.67 0.66 0.87 0.97  

KIA 0.81      
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Table 3. Cont. 

Study Site B Healthy Infested Dead Other Vegetation Canopy Gaps Sum

healthy 49 6 8 1 11 75 

infested 3 30 0 0 0 33 

dead 1 0 44 0 4 49 

other vegetation 1 0 1 28 0 30 

canopy gaps 1 0 3 0 37 41 

unclassified 0 0 0 0 0 0 

Sum 55 36 56 29 52  

Producer’s accuracy 89.1 83.3 78.6 96.6 71.2 

User’s accuracy 65.3 90.9 89.8 93.3 90.2 

Overall Accuracy 82.5     

KIA per class 0.84 0.81 0.73 0.96 0.65 

KIA 0.78     

4. Discussion  

This methodological study explored the capabilities of UAS-acquired high-resolution CIR-images for the 

detection of pest infestation levels in small oak forest stands caused by A. biguttatus applying object-based 

remote sensing techniques. As the beetle infestation can be detected physically from a transparent crown 

with few foliage on surviving branches, accompanied by a decrease in infrared reflectance of leaves caused 

by stress conditions [2,3] these characteristics can be identified using CIR-imagery [46–48].  

Due to the very high-spatial resolution of the UAS-acquired images (~2 cm), infestation levels were 

identified based on specific object features at branch level. This is important, as individual oak trees can 

have healthy, infested and dead branches at the same time depending on the infestation progress [49,50]. 

Hence, in comparison to satellite imagery studies realized on local, regional or landscape scale [10,51–53] a 

more precise assessment of infestation was possible. However, for comparable large scale studies (e.g., 

regional scale) the application of current used and publicly available small UAS platforms is still limited 

due short operation times and flight range. Future generations of micro UAS will tackle this issue by 

offering a continually increasing flight time [54].  

The use of UAS-acquired image data resulted in a “very good” (study site A) and “good” (study site B) 

overall KIA statistic, respectively. However, the classes infested and dead branches performed 

comparable poor (KIA per class 0.67 and 0.66) for the study site A. The main problem encountered here 

was that smaller objects below 6 cm were often not clearly distinguishable due to similar object feature 

properties in the applied descriptors compared to the surroundings. This resulted in misclassifications 

between the individual classes, especially between healthy and infested branches. In addition, light 

effects (over- or under exposed areas) had a negative impact on the classification accuracies. As the 

flight over the study site A was conducted in the early forenoon, light conditions were not optimal. These 

illumination issues (e.g., canopy shadows) could not be completely reduced using the modified NDVI 

and 2nd principal component images. Therefore, some misclassifications of infested and dead branches 

were probably related to this issue. One way to minimize this problem is to perform the UAS flights at 

local solar noon (sunny weather conditions) or during a closed cloud cover. Variable light conditions 

during the image acquisition, however, should be avoided. Further, due to the extraordinary thin shape 
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and albedo characteristics the class dead branches were often misclassified as canopy gaps and healthy 

branches. This problem could probably have been prevented by focusing on texture-based discriminators 

(e.g., grey level co-occurrence matrix (GLCM) homogeneity texture) [55]. However, due to the high 

heterogeneity of the branch texture within and between single tree crowns, this method seemed only 

partially suitable to discriminate individual classes. A more promising approach to distinguish between 

the classes canopy gap and dead branches could be the use of additional data such as elevation point 

clouds [56]. It has to be tested if Ground Sample Distance (GSD) is sufficient for classification at 

branches level and if high-resolution digital elevation model (DEM) data could be generated adapted to 

the needs of infestation management applications.  

The producer’s accuracies of the class healthy branches showed quite good results (85.5% for site A 

and 89.1% for site B, respectively), but the user’s accuracies of this class failed with only 75.8% (A) 

and 65.3% (B). This indicates that this class was over-classified. The same over-classification issue 

occurred for the class canopy gaps (study site A) and slightly for other vegetation (study site B). On the 

other hand, the classes infested and dead branches are characterized by higher user’s than producer’s 

accuracies for both study sites. Thus, the probability that objects classified as belonging to infested or 

dead branches indeed belong to that class is more likely. Overall, the producer’s and user’s accuracy 

values indicate a relatively good discrimination of infested branches versus all other classes except 

healthy branches. It is highly likely that an increase of the spectral resolution would be beneficial for 

the discrimination between this two classes. For example, Lucieer et al. [57] successfully applied a small 

hyperspectral sensor on a multirotor UAS. Such high-spectral resolution sensors enable a precise 

quantification of biochemical and biophysical properties of vegetation and therefore a more detailed 

identification of vegetation stress [58,59]. However, suitable hyperspectral sensors are costly and 

comparable heavy in weight which leads to significantly decreased flight times of multirotor UAS 

platforms [57].  

The achieved results for a non-professional, low-priced digital CIR-camera were promising. 

Particularly for the study site B the classification of infested branches achieved suitable results (KIA per 

class 0.81). Therefore, using UAS acquired CIR imagery could be a helpful tool for forest management 

and private forest owners. As presented in this paper, the identification of infested or dead oak branches is 

generally possible and allows a first assessment of the dimension of infestation in the forest stand. Remote 

sensing techniques using NIR spectral bands enable the detection and evaluation of tree stress [60–62]. 

Nevertheless, it is not a diagnostic tool providing information on the cause of stress. In the case of oak, 

multifactorial processes are related to oak decline [2,3]. Besides abiotic factors such as climatic  

extremes [63], soil chemical parameters [64] or air pollution [65], several biotic factors are implicated in 

oak declines all over the world. For example, infection by pathogenic fungi or microorganisms can also 

facilitate oak tree dieback [66]. In this study, the infestation of A. biguttatus was recognized as the main 

reason for defoliation and altered canopy reflection signature of the examined oaks. However, numerous 

of other bark or wood boring insects can be involved in the damage of oak forest stands [2]. Thus, a 

differential identification of the cause of stress just based on UAV-acquired image data is limited since 

as one or more factors as mentioned above may result in similar object features. Although this limitation 

exists, the used methodology can support visual ground surveys in potentially infested forest stands. Due 

to the obscurity of A. biguttatus these field surveys can be very costly and time-consuming [49]. Caused 

by the tunneling behavior of the larvae, they are well protected and difficult to detect at an early 
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infestation stage by ground monitoring. Therefore, oaks which are identified as possible infested in the 

UAV-acquired image data could be specifically investigated by a subsequent ground survey. In addition, 

the proposed methodology can facilitate the management purposes of other forest pests on oak (e.g., oak 

processionary moth) or even for other insect herbivores such as bark beetles on coniferous trees [67]. 

However, canopy branches of infested trees needs to show symptoms like defoliation and altered canopy 

reflection signatures.  

In perspective, new high spatial resolution UAS images and their software elaboration might be 

suitable to improve remote sensing analysis of forests. Still, CIR imagery is not the only tool needed for 

this type of investigation. There are many variables which need to be considered, and this method has 

its limitations. Throughout the investigation of CIR images, some limitations of the camera 

modifications and the custom-made colour filters became obvious, mainly regarding the image 

sharpness, the exclusion of the visible red light, and the distinction of NIR radiation in one channel of 

the CIR images. Technical information from typical CCD sensors showed that the infrared radiation of 

longer wavelengths (> 850 nm) was dispersed among the channels of Red, Green and Blue. Because the 

overall recording of NIR in the red channel is clearly overbalancing, vegetation can be well identified 

and distinguished (Figure 4). However, improved distinction of the NIR radiation in CIR images can be 

attained by means of a professional, purpose-built and commercially available colour infrared sensor. 

These sensors were specifically designed for application in agricultural and forestry research. 

Nevertheless, such specialized equipment is costly, with cameras worth over 2500 €, whereas images 

recorded with a modified digital camera (~300 €) provide a good value alternative as image 

characteristics are considered to be satisfactory for a wide spectrum of (ecological) applications. 

Another factor is the limited accessibility of a study area (through overgrown vegetation or as a result 

of legislation) which results in possible absence of ground-based GCPs. Subsequently, a direct 

georeferencing method without the need of GCPs would be required. In this case a digital elevation 

model (DEM) and very precise focal positioning of the sensor is crucial to calculate the exterior 

orientation of the obtained images. This information can be acquired by the joint use of the GPS receiver 

and the IMU onboard the sensor platform [68]. Currently the majority of micro UASs are equipped with 

GPS receivers, which enable a positional accuracy of about 2 to 15 m, which is too inaccurate for the 

direct processing of the exterior image orientation [69]. Research on improving the positioning of micro 

UAS systems by use of enhanced differential GPS (DGPS) is in progress [70]. This may allow for direct 

georeferencing of images in the future. As another option, a tachymetric observation and tracking of the 

UAS during the flight mission could give the necessary positioning data. Once these obstacles are 

overcome, small scale forest stand monitoring (of privately owned areas), would benefit highly from 

UAS-based remote sensing techniques. 

In future, resulting infestation maps could be disseminated via an image web mapping service (WMS) 

according to open geospatial consortium (OGC) standards for interoperability reasons to support local 

GIS users in forestry. Consequently potential users can easily combine these maps with their own 

existing, conventional forestry geodata in their GIS to provide a multi-temporal perspective on the study 

areas. This study focuses on UAS raster data and since this remote sensing data is commonly geocoded 

it can be exported in a GeoTiff format to enable a GIS-compatible publishing applying functionalities 

of ArcGIS server (ESRI 2014) and GEO server (OGC 2014). 
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5. Conclusions  

This study demonstrate the potential of Unmanned Aerial System (UAS)-based near infrared remote 

sensing techniques for forest stand observation and pest infestation monitoring. The capability to adjust 

the captured imagery by applying different filter combinations enables a highly flexible adaption of the 

camera setup to specific use cases and study areas. Consequently the relative easy, rapid and cost 

effective acquisition of near infrared (NIR) image data, its analysis and reliable classification with 

respect to indicator trees offers a promising tool that will facilitate the forest management in the future.  

In case of our privately owned test forest sites one can also state that the presented methodology has 

a strong positive economic impact on the traditionally applied ground based pest detection workflow for 

small and medium sized stands, since we would estimate the total saving of time and financial cost by 

more than 50% (in case of nearly inaccessible forested areas considerably higher, even one takes the 

moderate pre-investment for the UAS equipment into account). The overall reliability of the UAS-based 

colour infrared (CIR) image pest classifications (OA > 80%, KIA from 0.78 to 0.81), the flexibility in 

acquisition and the immediate GIS-compatibility of the calculated pest data will certainly encourage 

private forest managers to adopt such pest detection and monitoring strategies in general since this 

approach can be applied in modified ways to related forest pests on oak or other forest tree species if 

infested canopy branches show symptoms like defoliation and altered leaf reflection signatures.  

In addition our strategy to apply specific object related spectral features to the classification of UAS-based 

CIR data in terms of pest infestation levels (here triggered by Agrilus biguttatus) can easily be modified 

to meet the various requirements of further tests regarding the general suitability of the presented 

techniques for other pest related use cases in sustainable forestry. One promising approach might be the 

spectral combination of more sophisticated optical filters to extract stress indicator in canopy reflectance, 

like “red-edge” anomalies of the reflected NIR.  
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